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Abstract. I consider a theoretical description of recent experiments on doping the spin-Peierls compound
CuGeO3 and the Haldane gap compounds PbNi2V2O8 and Y2BaNiO5. The effective theory is the one of
randomly distributed spin-1/2 moments interacting with an exchange decaying exponentially with distance.
The model has two phases in the (doping, interchain coupling) plane: (i) a Néel ordered phase at small
doping; (ii) a quantum disordered phase at larger doping and small interchain interactions. The spin-
Peierls compound CuGeO3 and the Haldane gap nickel oxides PbNi2V2O8 and Y2BaNiO5 fit well into
this phase diagram. At small temperature, the Néel phase is found to be reentrant into the quantum
disordered region. The Néel transition relevant for CuGeO3 and PbNi2V2O8 can be described in terms of a
classical disordered model. A simplified version of this model is introduced, and is solved on a hierarchical
lattice structure, which allows to discuss the renormalization group flow of the model. It is found that the
system looks non disordered at large scale, which is not against available susceptibility experiments. In
the quantum disordered regime relevant for Y2BaNiO5, the two spin model and the cluster RG in the 1D
regime show a power law susceptibility, in agreement with recent experiments on Y2BaNiO5. It is found
that there is a succession of two distinct quantum disordered phases as the temperature is decreased. The
classical disordered model of the doped spin-1 chain contains already a physics relevant to the quantum
disordered phase.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

Doping quasi-one-dimensional (1D) antiferromagnets with
a spin gap has become experimentally possible since the
discovery of several inorganic quasi 1D oxides. One of
these compounds is CuGeO3 having a spin-Peierls tran-
sition at TSP ' 14 K [1]. Below TSP, the spin-phonon
coupling induces a dimerization of the lattice, and the
opening of a gap in the spin excitation spectrum. The
Haldane gap in spin-1 chains is another example of a
spin gap state in low dimensional magnets [2]. Two in-
organic spin-1 Haldane gap antiferromagnets have been
discovered in the recent years: (i) PbNi2V2O8 having a
spin gap ' 28 K [3]. (ii) Y2BaNiO5 having a spin gap
' 100 K [4]. The spin-Peierls compound CuGeO3 and
the two nickel oxides PbNi2V2O8 and Y2BaNiO5 can be
doped in a very controlled fashion. Substituting the mag-
netic Cu sites (having S = 1/2) of the spin-Peierls com-
pound CuGeO3 with a variety of ions (Ni [5] – a spin-1
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ion –, Co [6] – a spin-3/2 ion –, Zn [7–11] or Mg [12] – non
magnetic ions –), or substituting the Ge sites with Si [13]
leads to the formation of an antiferromagnetic phase (AF)
at low temperature. Moreover, in CuGeO3, there is AF
long range order even with an extremely weak concentra-
tion of Zn impurities [14]. On the other hand, the two
nickel oxides PbNi2V2O8 and Y2BaNiO5 have been the
subject of an important experimental interest recently.
It has been shown that substituting the spin-1 Ni sites
of the PbNi2V2O8 compound with Mg – a spin-0 ion –
leads to AF long range order. In the Y2BaNiO5 com-
pound, the Ni sites can be substituted with Zn or Mg
– non magnetic ions –. In this case, no sign of AF long
range order has been reported, even at extremely low tem-
perature [15–17]. Instead, it has been found that the sus-
ceptibility has a power-law temperature dependence [18].
Experiments therefore show that doping quasi 1D antifer-
romagnets with a spin gap can lead to very different situ-
ations: either antiferromagnetism, or a power-law suscep-
tibility without AF ordering. The purpose of the present
article is to describe these experimental observations in
a unified theoretical framework, and provide a detailed
theoretical analysis of the different phases of the model.
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On the theoretical side, a lot of efforts have been de-
voted to understand the behavior of random spin chains.
The theoretical tool usually used to study these models
is the cluster renormalization group (RG) [19], which is a
perturbation theory in the inverse of the strength of the
strongest exchange in the chain, and leads to a certain
number of exact results at low temperature because the
exchange distribution becomes extremely broad. A lot of
different models have been solved using this approach. For
instance: the Ising chain in a transverse magnetic field [20],
the random spin-1/2 chain [21], the spin-1/2 chain with
random ferromagnetic and antiferromagnetic bonds [22],
the dimerized chain with random bonds [23], the disor-
dered Haldane gap chain [24,25]. These studies have re-
vealed that 1D disordered magnets can be controlled by
several types of Griffiths phases: (i) the random singlet
phase with a diverging susceptibility and algebraic corre-
lation; (ii) the “weakly disordered” phase with a diverging
susceptibility and short range correlations.

An important question is to understand the rela-
tion between the available experiments on quasi-one-
dimensional oxides and the available theories of disordered
1D magnets. This type of approach followed in the present
article incorporates realistic constraints such as interchain
couplings and a finite temperature.

The starting point of such our description has been
already established in previous works [26–30]. In the
doped spin-Peierls systems, non magnetic impurities gen-
erate solitonic spin-1/2 degrees of freedom distributed at
random with a concentration x. The solitons are con-
fined close to the impurities because of interchain interac-
tions [30–37], and interact with the Hamiltonian

H =
∑
〈i,j〉

Ji,jSi · Sj . (1)

The exchange between two spin-1/2 moments at posi-
tions (xi, yi) and (xj , yj) is mediated by virtual excitations
of the gaped medium and therefore decays exponentially
with distance:

Ji,j = (−)xi−xj+yi−yj

×∆ exp

−
√(

xi − xj
ξx

)2

+
(
yi − yj
ξy

)2
, (2)

where ξx and ξy are the correlation lengths in the direc-
tion of the chains and perpendicular to the chains respec-
tively [28–30]. The form (2) of the exchange incorporates a
correlation length in the transverse direction shorter than
in the longitudinal direction (ξy = ξx/10, and ξx ' 10
in CuGeO3 [38,39]). The exchange equation (2) is stag-
gered because the dimerized pattern propagates staggered
antiferromagnetic correlations. The Hamiltonian (1, 2) is
therefore strongly disordered but unfrustrated.

Now, the model relevant to describe doping in a Hal-
dane gap system is almost identical. It is well known that
an impurity in a Haldane gap chain generates two “edge”
spin-1/2 moments: one at the right and one at the left of

J J2 2exp(-l / ξ )(-)
l
∆

Fig. 1. The low energy effective model of the doped spin-1
system. A paramagnetic impurity (square symbols) generates
a unit of two edge moments. The edge moments originating
from the same impurity are coupled ferromagnetically by an
exchange −J2 having the same order of magnitude as the in-
terchain coupling. Two edge moment at a distance l are coupled
by the exchange (−)l∆ exp (−l/ξ).

the impurity site [40–42]. The spin-1 chain can be thought
in terms of a Valence Bond Solid (VBS) [43]. Introducing
a paramagnetic site breaks two VBS bonds, therefore re-
sulting in two “edge” spin-1/2 moments. At energies far
below the Haldane gap, only these edge moments are the
relevant degrees of freedom (see Fig. 1). The two edge mo-
ments in the same unit (i.e. generated by the same impu-
rity) interact with a ferromagnetic exchange−J2 originat-
ing from the coupling to neighboring chains, with therefore
the same order of magnitude as the interchain interaction:
J2 ∼ J⊥ [44]. The edge moments belonging to different
units are coupled by the staggered exchange equation (2).

We find that, depending on the doping concentra-
tion and interchain interactions, the model (1, 2) has two
regimes: a Néel ordered region and a quantum disordered
region. In the Néel ordered region, relevant for CuGeO3

and PbNi2V2O8, quantum mechanics plays little role, and
we are lead to replace the spin variables in equations (1, 2)
by classical Ising spins. We propose here that this type of
disordered Ising model is equivalent to another type of
disordered Ising model, and solve the hierarchical lattice
version of the latter. Using this treatment, we can com-
pute the renormalized exchange distribution. In spite of a
strongly disordered initial Hamiltonian (see Eqs. (1, 2)),
we find that at large scale, the problem behaves as if it
were non disordered. This appears to be consistent with
susceptibility experiments showing a well-defined transi-
tion even with a small doping concentration [14].

In the quantum disordered region of the phase dia-
gram, the physics is dominated by the formation of ran-
domly distributed singlets. We show that the susceptibil-
ity has a power-law behavior, which turns out to be in
agreement with existing experiments on Y2BaNiO5 [18].
We also find the existence of two distinct “quantum dis-
ordered” phases. The high temperature “quantum disor-
dered” phase appears to have been observed experimen-
tally in Y2BaNiO5 [18]. There appears to be another low
temperature “quantum disordered” phase in which the
edge spins in the same unit (see Fig. 1) are frozen into
spin-1 objects. Finally, we show that even in the quan-
tum disordered regime of the model, part of the quantum
disordered behavior is already contained in the classical
disordered magnet.

The article is organized as follows: the phases of the
model (1, 2) are discussed in Section 2. We show the exis-
tence of two phases: a Néel ordered region and a quantum
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disordered region. The nature of these two phases is next
discussed in details in Sections 3 and 4. Concluding re-
marks are given in Section 5.

2 Phases of the model

In this section, we use a phenomenological approach to
derive the phase diagram of the model. The calculation of
the relevant energy scales in the problem is based on the
analysis of a two-spin model. There is a first temperature
scale (being a fraction of the spin gap ∆) below which
magnetic correlations start to develop inside the chains.
There is a second energy scale Ttyp, equal to the typical
exchange, associated to singlet formation. There is a third
energy scale TStoner associated to long range AF ordering.
The behavior of the model depends strongly on whether
TStoner is larger or smaller than Ttyp.

2.1 Onset of magnetic correlations

Magnetic correlations start to appear inside the chains
when the temperature is a fraction of the spin gap ∆. To
show this, let us consider a simple model in which two
spins at a distance l are coupled antiferromagnetically:
H = J(l)S1 · S2. We use an exchange decaying exponen-
tially with distance (see Eq. (2)): J(l) = ∆ exp (−l/ξ), and
a Poisson bond length distribution P(l) = x exp (−xl).
Rigorously, the spacing l is a discrete quantity, distributed
according to a geometrical distribution. However, the
physics will turn out to be controlled by the large-l be-
havior and it is legitimate to consider l as a continuous
variable, and replace the geometrical distribution by the
Poisson distribution.

The internal energy of the two-spin model reads

U(T ) = −3
4
xξ∆−xξT xξ+1

×
∫ β∆

0

uxξ
exp (3u/4)− exp (−u/4)

exp (3u/4) + 3 exp (−u/4)
du. (3)

This expression can be expanded in T :

U(T ) ' −3
4
xξ∆

1 + xξ
+

9
2
xξ

(
T

∆

)xξ
T + ... (4)

Magnetic correlations start to appear in the two-spin
model in the low temperature regime in which U(T ) is
linear in T . This regime appears when T is a fraction of
∆ (see Fig. 2).

2.2 Singlet formation

To discuss in what temperature range is the physics con-
trolled by the quantum mechanical ground state (being
a singlet), we need to calculate the probability Ps(T ) to
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Fig. 2. Temperature dependence of the internal energy of the
classical and quantum two-spin model, with ∆ = 44.7 K,
ξ = 10, x = 0.01, relevant for CuGeO3. The temperature
and energy are calculated in Kelvin. In the two-spin classi-
cal model, we considered two spins coupled by an Ising term
H = (J/2)σ1σ2.

find the two spins in a singlet state at a finite temperature
T = 1/β. We have

Ps(T ) =
∫

dlP(l)
exp [3βJ(l)/4]

exp [3βJ(l)/4] + 3 exp [−βJ(l)/4]
(5)

= 1− 3xξ
(
T

∆

)xξ
×
∫ β∆

0

u−1+xξ exp (−u/4)
exp (3u/4) + 3 exp (−u/4)

du, (6)

where we used the dimensionless parameter u = βJ . The
integral in equation (6) is dominated by the small ex-
changes and we have Ps(T ) ' 1 − κ(T/∆)xξ, with κ a
numerical factor. We are lead to conclude that the ground
state occupancy is close to unity below the energy scale
Ttyp ∼ ∆ exp (−1/(xξ)). Ttyp is nothing but the typical
exchange, already identified in a previous work on the 1D
model [26,27].

The calculation of the ground state occupancy can be
made even simpler by noticing that only the disorder con-
figurations in which the exchange is larger than ∼ T are
in a singlet configuration. This leads to

Ps(T ) '
∫ ξ ln (β∆)

0

x exp (−xl)dl ' 1−
(
T

∆

)xξ
.

It is remarkable that the energy scale Ttyp arising from the
two-spin model is identical to the one obtained previously
from the exact solution of the 1D effective model of the
spin-Peierls chain [27]. This shows that a model with only
two spins contains already the relevant physics.

2.3 Néel ordered versus quantum disordered behavior

At low temperature, correlations between the chains in-
duce a long range ordering of the spin system. The sim-
plest phenomenological description of long range ordering
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Fig. 3. In the models with 3D antiferromagnetism (a) Ttyp

is far below TStoner = J⊥xξ, with therefore a classical transi-
tion to an AF phase. This is the case for PbNi2V2O8 as well
as CuGeO3. In the models with a quantum disordered ground
state (b), J⊥ is far below Ttyp, which occurs in Y2BaNiO5. In
this case, the classical paramagnet has a cross-over to a 1D
quantum disordered state with formation of random singlets.
Below J⊥, singlets are formed among spins belonging to differ-
ent chains. Below T ′Stoner, there is a transition to a reentrant
antiferromagnetic phase. Intrachain correlations start to play
a role when the temperature is below a fraction of the spin
gap ∆.

is provided by a Stoner model, already considered in refer-
ence [28]. In CuGeO3, there is a succession of three regimes
(see Fig. 3a): (i) a paramagnet at high temperature, (ii)
intrachain correlations develop when the temperature is a
fraction of ∆ (iii) interchain correlations give rise to long
range antiferromagnetism below TStoner = J⊥xξ.

In PbNi2V2O8, the relevant parameters are ∆ ' 30 K,
x ' 0.02, J⊥ ' 1.1 K. We approximate the correlation
length in the Haldane gap phase to be ξ ' 6. The true
correlation length is expected to be larger than this value
because PbNi2V2O8 is close to a transition to an Ising
ordered antiferromagnet [3]. We find TStoner = 0.13 K,
Ttyp = 6 mK, showing that the same succession of regimes
occur in PbNi2V2O8 and CuGeO3 (see Fig. 3a). This is
compatible with existing experiments in PbNi2V2O8 [3].

Therefore, in CuGeO3 and PbNi2V2O8, one has
TStoner � Ttyp. This implies that singlet formation plays
little role in the physics of the antiferromagnetic tran-
sition. The quantum two-spin model can then be well
mimicked by the classical two-spin model. For instance,
the internal energy of the classical and quantum two-spin
models have an identical temperature dependence (see
Fig. 2). This indicates that one might expect to obtain a
reasonable description of antiferromagnetism in CuGeO3

and PbNi2V2O8 on the basis of a classical model, which
we analyze in details in Section 3.

Now, the situation is different in Y2BaNiO5, where one
has ∆ ' 100 K, ξ ' 6, J⊥ ' 0.3 K, and x ' 0.04 [18]. We
find Ttyp = 1.6 K, and TStoner = 0.07 K. What is new com-
pared to CuGeO3 and PbNi2V2O8 is that a well defined
quantum disordered regime is present below Ttyp. In be-

tween J⊥ and Ttyp, there is singlet formation in the chain
direction, and below J⊥, the singlets develop in the trans-
verse direction. Below the energy scale Ttyp, the staggered
susceptibility is well described by the one of the random
spin-1 chain [24,25]

χ(T ) ∼ xTα−1/Tαtyp. (7)

Using a cluster RG calculation, we will calculate the sus-
ceptibility in section 4.2 and show that it has indeed a
power-law temperature dependence. The Stoner criterion
leads to the ordering temperature

T ′Stoner

Ttyp
=
(
J⊥xξ

Ttyp

)1/(1−α)

.

This shows that the quantum disordered model transits to
a reentrant antiferromagnetic ground state below T ′Stoner.
The different regimes of the model are shown in Figure 3b.

The existence of two classes of models is best summa-
rized by calculating the ratio

TStoner

Ttyp
=
J⊥
∆
xξe1/(xξ),

which can be smaller or larger than unity, controlling
whether the model has a Néel transition at TStoner or is
in a quantum disordered regime. These two behaviors, as
well as a comparison between the model and existing ex-
periments on CuGeO3, PbNi2V2O8 and Y2BaNiO5, have
been reported on the phase diagram in Figure 4.

3 Nature of the antiferromagnetic transition

3.1 Motivation of the hierarchical lattice study

In low doping experiments in CuGeO3, Manabe et al.
have measured the doping dependence of the Néel tem-
perature, and found that the experimental data in the
range x > 0.1% could be well fitted by the behav-
ior TN ∼ A exp (−B/x) [14]. This suggests that there
is no critical concentration associated to antiferromag-
netism. As already pointed out in references [28,29], the
model (1, 2) shows sings of compatibility with these ex-
periments. The main unsolved question raised by the ex-
periments by Manabe et al. [14] is to determine whether
the maximum in the susceptibility is really the signature
of an antiferromagnetic phase transition with a diverg-
ing staggered correlation length. In fact, the susceptibility
experiments give no information about the existence / ab-
sence of a diverging correlation length, and there are are
no neutron experiments with a concentration of impuri-
ties of order ' 0.1%. On the theoretical side, we used
previously several approaches to describe the nature of
the antiferromagnetic phase of the model (1, 2): a Stoner
model [28], a decimation method, a cluster RG [29], and
a Bethe-Peierls solution of the classical model [29]. It ap-
pears that different treatments of the model have lead
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Fig. 4. Phase diagram in the plane (xξ, J⊥/∆). The solid line
is J⊥/∆ = 1/(xξ) exp [−1/(xξ)], delimitating the transition
from the Néel ordered region to the quantum disordered region.
Various experimental systems have been reported on the dia-
gram: (+, ×) Y2BaNiO5 [17,18] (being quantum disordered);
(*) CuGeO3 [14] (being antiferromagnetic); (�) PbNi2V2O8 [3]
(being antiferromagnetic). The values of J⊥ and ξ have been
taken from these references. This phase diagram is valid above
the temperature scale T ′Stoner. Below T ′Stoner, the antiferromag-
net is reentrant inside the quantum disordered phase.

to different answers. For instance, there is a well defined
transition in the Stoner criterion and the Bethe-Peierls
treatments [28,29]. On the contrary, there is no transition
in the decimation method where the Hamiltonian (1, 2)
is mapped onto a percolation model [28]. A possible ap-
proach to this problem would be to generalize the work in
reference [45]: instead of considering the model (1, 2) with
infinite range exponential interactions, it is possible to ap-
proximate the problem by considering the Voronoi lattice
model with exponential interactions, in which each lattice
site has a finite number of neighbors. This model is well
suited for carrying out numerical simulations, and avoids
the difficulty that the initial model (1, 2) has infinite range
interactions.

Here, we would like to follow a different route and re-
place the original Hamiltonian (1, 2) by a simplified one.
This is done by noticing that the essential feature of the
Hamiltonian (1, 2) is that the exchange between two spins
at a random position is distributed according to

P(J) =
xξ

∆

(
J

∆

)xξ−1

, (8)

where we used the spacing distribution P (l) = x exp (−xl)
and the exchange J(l) = ∆ exp (−l/ξ). We replace the
original model (1, 2) by another model in which the spins
are on the sites of a regular square lattice, and have a
random nearest neighbor exchange in the distribution (8).
Because the square lattice model with the exchange dis-
tribution (8) and the original model (1, 2) are controlled
by the same type of disorder, it is natural to conjecture
that the two models have an identical physics. One way

(a) (b)

Fig. 5. The hierarchical diamond used in the Migdal-Kadanoff
renormalization. (a) A hierarchical lattice with 3 generations.
(b) A hierarchical lattice with 2 generations. One RG transfor-
mation consists in decimating the sites at the deepest into the
lattice, i.e. for instance transforming the lattice (a) into the
lattice (b).
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Fig. 6. The notations used in the renormalization.

to study the square lattice model with the exchange dis-
tribution (8) would be to perform large scale Monte Carlo
simulations. There is however a more direct way to handle
the model, which consists in replacing the square lattice
by a recursive hierarchical lattice (see Fig. 5), where the
Migdal Kadanoff RG equations can be obtained in an ex-
act form. We will show that a non trivial physics is going
on in the hierarchical lattice model, which is an indica-
tion there is also a non trivial physics in the square lattice
model with the exchange distribution (8).

3.2 Renormalization group equations

Let us derive the RG equations of the Ising model with
the exchange distribution (8) on a hierarchical lattice. The
partition function associated to the exchange configura-
tion in Figure 6a reads

Z(Σ,Σ′) =
∑
σ,σ′

expβ [J1Σσ + J2Σσ
′ + J3Σ

′σ + J4Σ
′σ′],

(9)

and we impose that equation (9) be identical to the parti-
tion function associated to the exchange configuration in
Figure 6b, up to a proportionality factor:

Z(Σ,Σ′) = N exp (βJ̃ΣΣ′).
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Using the relation

J̃ =
1

2β
ln
[
Z(+,+)
Z(+,−)

]
,

we find J̃ = J̃1−3 + J̃2−4, where

J̃1−3 =
1

2β
ln
[

cosh (β(J1 + J3))
cosh (β(J1 − J3))

]
,

J̃2−4 =
1

2β
ln
[

cosh (β(J2 + J4))
cosh (β(J2 − J4))

]
. (10)

Now that we have determined the renormalization of the
exchanges, we iterate the exchange distribution. Noting
P (J1) ... P (J4) the distribution of the exchanges J1 ... J4,
and P (J̃) the distribution of the renormalized exchange
J̃ , we have

P̃ (J̃) =
∫

dJ1dJ2dJ3dJ4 P (J1)P (J2)P (J3)P (J4)δ

×
[
J̃ − J̃1−3 − J̃2−4

]
. (11)

It will be useful to change variables to the bond lengths
l = ξ ln (∆/J) and iterate the bond length distribution
p(l) instead of the exchange distribution P (J).

To calculate numerically the iteration of the exchange
distribution (11), we use a discrete bond length l =
1, ..., N , and we introduce an upper cut-off for the bond
length. This is valid if we can check that the RG flow does
not depend on N .

3.3 Analysis of the RG flow

The RG flow of the model is shown in Figure 7. We have
shown in this figure the evolution of the average bond
length 〈〈l〉〉 and the width of the bond length distribu-
tion

√
〈〈(l − 〈〈l〉〉)2〉〉. At low temperature, the average

bond length renormalizes to zero (ordered phase) while
at high temperature it renormalizes to infinity (paramag-
netic phase). Therefore, there is a well-defined transition
in the model. We have checked that the transition temper-
ature is independent on the cut-off N used to iterate the
bond length distribution. The existence of a thermody-
namic transition could have been anticipated on the basis
of the simplest possible approximation of the RG flow (see
Appendix A). What is less obvious is that, after a tran-
sient in the first RG iterations, the width of the exchange
distribution becomes much smaller than the average ex-
change: in spite of a broad initial exchange distribution
in which 〈〈l〉〉 =

√
〈〈(l − 〈〈l〉〉)2〉〉, the system renormal-

izes to an almost disorder-free exchange distribution in
which

√
〈〈(l − 〈〈l〉〉)2〉〉 � 〈〈l〉〉. Therefore, at large scale,

the spin system looks ordered while inhomogeneities are
visible only at small scale. This type of behavior may ex-
plain why there is a pronounced maximum in the temper-
ature dependence of the susceptibility even at very low
doping [14].
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Fig. 7. RG flow of the classical model relevant for the an-
tiferromagnetic transition in CuGeO3. The parameters are
∆ = 44.7 K and ξ = 10, and we used a cut-off N = 300.
The doping concentration is x = 0.02. The solid line repre-
sents the evolution of the average bond length 〈〈l〉〉. The doted
lines represent the evolution of the width of the bond length
distribution

p
〈〈(l− 〈〈l〉〉)2〉〉. The RG trajectories with T = 5

(+), T = 4 (×), T = 3 (*) and T = 2 (�) flow into the param-
agnetic phase (the bond length renormalizes to infinity). The
trajectories with T = 1 (�), T = 0.26 (•), T = 0.06 (N) flow
into the ferromagnetic phase (the bond length renormalizes to
zero).

4 Nature of the quantum disordered region

Now, we would like to investigate the behavior of the
model in the quantum disordered region, and compare
it to experimental data on the Haldane gap compound
Y2BaNiO5. More specifically, we would like to determine
whether the behavior of the model is compatible with the
susceptibility experiments by Payen et al. [18], who re-
ported that the susceptibility of Y2BaNiO5 has a power-
law temperature dependence. In our opinion, it is an im-
portant question to determine which ingredients should
be incorporated in the theoretical model to describe the
existing experiments. A first strategy, followed by Batista
et al. [46] is to look for the “most realistic possible” model.
The first step in this approach is to consider that the rel-
evant Hamiltonian for Y2BaNiO5 takes the form

H =
∑
i

{
JSi · Si+1 +D(Szi )2 +E

[
(Sxi )2 − (Syi )2

]}
.

(12)

The anisotropy parameters in equation (12) have been
determined by fitting inelastic neutron scattering exper-
iments [47,48]. Next, a density matrix renormalization
group (DMRG) method has been used to treat the Hamil-
tonian (12) in the presence of magnetic impurities. The
authors of reference [46] are then able to reproduce spe-
cific heat experiments, and also arrive to an agreement
with susceptibility experiments [18]. The main objection
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that one might be tempted to formulate is that the Hamil-
tonian of the spin-1 chain relevant for Y2BaNiO5 contains
already three adjustable parameters, and that two more
additional gyromagnetic factors have been added to de-
scribe the susceptibility experiments [18]. Here, it is pro-
posed that the power law temperature dependence of the
susceptibility is a generic feature of the quantum disor-
dered region of the phase diagram, that can be explained
in a model with only a minimal number of ingredients.

4.1 Two-spin model

As we already explained in the Introduction, in the low
energy model relevant to describe the doped Haldane gap
compound, each paramagnetic impurity generates a unit
of two “edge” spin-1/2 moments (see Fig. 1). The two
spin-1/2 moments in the same unit are coupled by a fer-
romagnetic exchange J2 the magnitude of which is of order
of interchain interactions [44]. As shown in Figure 1, there
is a staggered exchange (−)l exp (−l/ξ) coupling two edge
moments at a distance l.

Let us first consider the simplest model in which the
impurities are assumed to cut the chain into finite seg-
ments: J2 = 0. This is a valid model if the temperature is
larger than J2, or equivalently, than the strength of inter-
chain interactions. Consider two edge spins at distance l,
coupled with a Heisenberg Hamiltonian H = J(l)S1 ·S2−
h(Sz1 + Sz2), and the exchange J(l) = ∆(−)l exp (−l/ξ),
with P(l+) = x exp (−xl+) the distribution of even length
segments and P(l−) = x exp (−xl−) the distribution of
odd length segments. It is easy to calculate the average
magnetization in a magnetic field h:

〈〈M(h, T )〉〉 =
1
2
x

∫ ∆

0

P(J)

× [M+(h, T, J) +M−(h, T, J)] dJ, (13)

with P(|J |) = (xξ/∆)(|J |/∆)−1+xξ the exchange distri-
bution, and

M+(h, T, J) =
eβh − e−βh

eβh + e−βh + 1 + eβJ
,

M−(h, T, J) =
eβh − e−βh

eβh + e−βh + 1 + e−βJ
(14)

the magnetization of the spins coupled by an antiferro-
magnetic or ferromagnetic exchange J at a finite temper-
ature T = 1/β. To calculate the magnetization (13, 14),
it is convenient to integrate by parts:

〈〈M(h, T )〉〉 = xA+ x

(
T

∆

)xξ ∫ ∆/T

0

uxξf(u, h/T ),

(15)
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Fig. 8. Log-log plot of the temperature dependence of Tχ(T )
for the two-spin model and the cluster RG of the full chain.
We used ∆ = 100 K, ξ = 6. For the two-spin model, we used
x = 0.01 (�), x = 0.03 (�), x = 0.05 (∆), x = 0.07 (∇). The
same symbols filled in black have been used for the cluster RG
calculation. The product Tχ(T ) has been fitted to a power-
law dependence Tχ(T ) ∼ Tα, with α = 0.017 (x = 0.01), α =
0.037 (x = 0.03), α = 0.04 (x = 0.05), α = 0.04 (x = 0.07).

with

A =
1
2

[
eβh − e−βh

eβh + e−βh + 1 + e∆/T

+
eβh − e−βh

eβh + e−βh + 1 + e−∆/T

]
(16)

f(u,
h

T
) = −1

2
d

du

[
eβh − e−βh

eβh + e−βh + 1 + eu

+
eβh − e−βh

eβh + e−βh + 1 + e−u

]
. (17)

The resulting susceptibility is shown in Figure 8, where it
is visible that the product Tχ(T ) ∼ Tα has a power-law
behavior at low temperature, like what has been observed
in experiments on Y2BaNiO5 [18]. The magnetization in
an applied magnetic field is shown in Figure 9, and is close
to the experimental observation [18]. This shows that this
model with only two spins contains much of the physics as
far as the temperature is above the interchain coupling J⊥.

4.2 Cluster RG

4.2.1 Quantum disordered phase I

Now, let us consider the cluster RG of the model with
a finite J2, and first consider the behavior of the model
when the temperature is larger than J2. I refer the reader
to references [19,22,29] for an explanation of the method,
and just present here the results. First, if the temperature
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Fig. 9. Magnetization of the two-spin quantum model, with
the parameters relevant for Y2BaNiO5: ∆ = 100 K, ξ = 6.

is above J2, we find that the exponent of the power-law
Curie constant Tχ(T ) ∼ Tα is identical to the one of the
two-spin model (see Fig. 8). This is not a surprise because
above J2 the edge moments in the same unit remain un-
coupled and the cluster RG contains the same physics as
the two-spin model. Moreover, the two-spin model is an
exact treatment while the cluster RG is approximate. The
agreement between the two methods shows the validity of
the cluster RG method.

4.2.2 Quantum disordered phase II

Now, I consider the cluster RG of a single chain at a tem-
perature smaller than J2 ∼ J⊥. The temperature depen-
dence of the Curie constant is shown in Figure 10. It is
visible that the Curie constant increases strongly with de-
creasing the temperature below J2. This is because when
T ∼ J2, the survival spin-1/2 moments in the same unit
are frozen into spin-1 moments. This phenomenon is not
quantum in nature because it occurs also in the classical
disordered model, which is analyzed in details below.

Once the freezing into spin-1 units has been done at
the energy scale J2, the resulting effective model is again
the one of spin-1 objects with random exchanges, being
ferromagnetic or antiferromagnetic. This results in the low
temperature quantum disordered phase II in Figure 10.

In the presence of a finite interchain coupling, one still
expects the appearance of two types of quantum disor-
dered regions. It is also expected that the quantum disor-
dered phase II in Figure 10 is a 3D random singlet state,
with singlet formation between spins belonging to differ-
ent chains. The cross-over to a 3D regime is however not
expected to change the shape of the temperature depen-
dence of the susceptibility (see Fig. 10).
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Fig. 10. Temperature dependence of the Curie constant, with
the parameters relevant for Y2BaNiO5: ∆ = 100 K, ξ = 6,
and x = 0.03, x = 0.05, and x = 0.07. We renormalized a
chain with 10 000 sites and averaged over 100 realizations of
disorder. We used J2 = 0.3 K.
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Fig. 11. Temperature dependence of the Curie constant Tχ(T )
in the classical analog of the doped spin-1 chain. The parame-
ters are ξ = 6, ∆ = 100 K, J2 = 0.3 K, relevant for Y2BaNiO5.
The Curie constant crosses over from 2x at high temperature
to 4x at low temperature.

4.3 Classical disordered model

Now, let us determine to what extend the physics of the
classical magnet resembles the physics of the quantum
magnet. The Ising chain Hamiltonian reads

H =
∑
i

Ji,i+1σiσi+1,

with the Ising variables σi corresponding to the consec-
utive edge moments, and Ji,i+1 determined according to
the rules in Figure 1. The even bonds correspond to a fer-
romagnetic exchange −J2 and the odd bonds correspond
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Fig. 12. Scaling of the magnetization M(h, T ) =
T−γG(x, h/T ) in the classical analog of the doped spin-1 chain.
We have shown G(x, h/T ) as a function of h/T . Each curve cor-
responds to values of T varying from 0.9 to 3 and h varying
from 0 to 1. We used the parameters ξ = 6, ∆ = 100 K relevant
for Y2BaNiO5. We used γ ' 0.05.

to an exchange J(l) = ∆(−)l exp [−l/ξ], with the spacing
l drawn in the Poisson distribution P (l) = x exp (−xl).

As shown in Appendix 5, the Curie constant crosses
over from 2x at high temperature to 4x at low tem-
perature, when the temperature decreases below J2 (see
Fig. 11). Therefore, in the classical model, the product
Tχ(T ) increases monotonically with a decreasing temper-
ature, while the opposite is observed experimentally in
Y2BaNiO5 [18]. This is not unexpected because the clas-
sical model cannot describe the gapless Haldane phases.
Nevertheless, the increase in the susceptibility below J2

is very reminiscent of the behavior of the quantum model
in the same temperature range. This is because the freez-
ing of the edge moments of the same unit in a ferromag-
netic alignment occurs both in the classical and quantum
models.

The scaling function of the magnetization can be cal-
culated easily by iterating numerically the magnetization
distribution (20) and using the relation

P(M,h) =
P(M,h = 0)eβhM∑
M′ P(M ′, h = 0)eβhM′

to obtain the magnetization distribution in a finite mag-
netic field. The magnetization takes the form M(h, T ) =
T−γG(x, h/T ) in a given temperature range where the sus-
ceptibility can be approximated by χ(T ) ∼ T−1−γ . The
scaling function is shown in Figure 12, where it is visible
that it has qualitatively the correct behavior in spite of
the exponent γ having the wrong sign compared to exper-
iments. Therefore, the shape of the scaling function of the
magnetization does not appear to be a crucial test to the
model.

5 Conclusions

To conclude, the present work was intended to describe
doping a spin-Peierls and a Haldane gap state in a unified
framework. We have first shown how the relevant energy
scales in the problem could be calculated from the analysis
of a two-spin model, which allowed to discuss the phases
of the model as a function of the doping concentration and
interchain interactions. In the relevant temperature win-
dow, there are two distinct regions depending on the dop-
ing concentration and interchain interactions: (i) an an-
tiferromagnetic region; (ii) a quantum disordered region.
remarkably, this type of phase diagram compares well with
the known behavior of the spin-Peierls compound CuGeO3

and the two nickel oxides PbNi2V2O8 and Y2BaNiO5.
Next, we used our approach to investigate in more de-

tails the two possible phases of the model. We have shown
that the physics in the antiferromagnetic region of the
phase diagram is classical in nature and therefore we were
lead to study the corresponding Ising model. We have re-
placed the original Hamiltonian (1, 2) by another Hamilto-
nian having the same features, and presented the solution
of the latter Hamiltonian on a hierarchical lattice struc-
ture. Interestingly, we find that the renormalized problem
is non disordered. This is in agreement with the presence
of a well-defined cusp associated to antiferromagnetism in
the susceptibility [14].

In the “quantum disordered” region of the phase dia-
gram, the physics is strongly controlled by quantum fluc-
tuations. Already in a model with two spins only does the
susceptibility have a power-law temperature dependence,
very similar to the experimental observation [18]. We have
suggested that there is no need to introduce many cou-
pling constants to reach an agreement between the model
and experiments. Going beyond the level of a two-spin
model, we have found the existence of another quantum
disordered phase at low temperature. We have analyzed
the behavior of the classical model and shown it contains
already a physics relevant to the quantum model.

Appendix A: Projection of the RG flow
on a trial exchange distribution

We would like to present the simplest possible approxi-
mation of the RG equations obtained in Section 3.2 in
which we project the RG flow onto the single parameter
distribution pn(l) = δ(l − Ln). The initial distribution is
obtained via the relation

∫
p0(l)dl =

∫
x exp (−xl)dl, with

p0(l) = δ(l − L0). This leads to

L0 = ξ ln
(

1 + xξ

xξ

)
. (18)

Next, we start from the distribution pn(l), make one RG
transformation (11), and impose that the iterated distri-
bution has the same first moment as pn+1(L), from what
we can determine the parameter Ln+1:

Ln+1 = ξ ln
β∆

ln cosh [2β∆ exp (−Ln/ξ)]
· (19)
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Since we want to discuss the stability of the paramagnetic
phase, we consider equation (19) in the limit of a large
bond length: Ln+1 ' −ξ ln (2β∆) + 2Ln. In this limit, we
find Ln = ξ ln (2β∆) + (L0 − ξ ln (2β∆)) 2n. Using equa-
tion (18), we obtain a phase transition at the temperature

Tc =
2∆xξ
1 + xξ

·

The transition temperature is in agreement with what has
been found in previous works with different methods (the
Stoner criterion [28] and the Bethe-Peierls method [29]).
As we show in the body of the article, the renormalized
exchange distribution can be well approximated by the
distribution pn(l) = δ(l−Ln) in the sense that the problem
renormalizes to a non disordered one.

Appendix B: Solution of the classical analog
of the doped spin-1 chain

We consider a finite chain with N edge moments in which
the end spin at site N is frozen in the direction +, and
note P+

N (M) the corresponding magnetization distribu-
tion. We note xi = exp (βJi)/[exp (βJi) + exp (−βJi)] the
probability to find the spins σi and σi+1 in an antiparallel
alignment. We have

P+
N+1(M) = (1− xN )P+

N (M − 1) + xNP−N (M − 1).
(20)

Using the relation P+
N (M) = P−N(−M), we get

〈M〉+N+1 = (1− 2xN )〈M〉+N + 1 (21)

〈M2〉N+1 = 〈M2〉N+1 + 2(1− 2xN )〈M〉+N + 1. (22)

These relations can be solved analytically. For this pur-
pose, let us separate the even bonds coupled by the fer-
romagnetic exchange −J2 and note xF = e−βJ2/[eβJ2 +
e−βJ2 ]. The odd bonds are ferromagnetic or antiferromag-
netic and we are lead to define

y =
+∞∑
l=1

P(l)
e−βJ(l)

eβJ(l) + e−βJ(l)
·

The magnetization of a chain with an even number of sites
N = 2p is found to be

〈M〉+2p =
2(1− xF)

1−X [1−Xp] , (23)

with X = (1 − 2xF)(1 − 2y). The correlation length is
ξT = −2/ lnX . With an odd number of sites N = 2p+ 1,
the magnetization is

〈M〉+2p+1 =
2(1− y)
1−X − X + 1− 2y

1−X Xp. (24)

The expressions of the first moment (23, 24) are next used
to solve for the second moment:

〈M2〉2p ∼ 2p
{

1 +
2(1− 2y)(1− xF)

1−X

+
2(1− 2xF)(1− y)

1−X

}
,

to leading order in the chain length 2p. At high tempera-
ture, one has y ∼ 1/2, xF ∼ 1/2 and X ∼ 0, and therefore
a susceptibility scaling like χ ∼ 2x/T . At low temperature,
one has xF ∼ 0, y ∼ 1/2 and X ∼ 0, and a susceptibil-
ity scaling like χ ∼ 4x/T . Therefore, the Curie constant
crosses over from the high temperature value 2x to 4x
at low temperature, because the spin-1/2 moments in the
same unit are frozen ferromagnetically at a temperature
T ∼ J2 (see Fig. 11).
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